CPHD-1

High-Definition Multimedia Interface Pattern Generator

Quick Guide

TABLE OF CONTENTS

1. Features and Specifications 3
Features 3
Specifications 3
RS-232 Protocol 3
2. Front Panel Operation 4
3. Rear Panel Installation and Connection 5
4. IIMING Table 6
5. PATTERN Table 7
6. Remote Control 12
7. RS-232 Remote Control Protocol. 13
8. RS232 Remote Control Application 15
8.1 Main Window 15
8.2 Select COM port to control 15
8.3 Switch TIMING 16
8.4 Switch PATTERN 17
8.5 Programming TIMING/PATTERN 18
8.6 EDID 19
8.6.1 Read EDID 20
8.6.2 Memory of EDID 20
8.6.3 Upload EDID 20
8.6.4 Write EDID 20

1. Features and Specifications

Features

- Provides total 39 Timings and 39 Patterns
- Supports HDCP signal verification pattern (P39)
- On-panel LED display and LED indicators
- Remote control
- Supports RS-232 control, specific PC application included

Specifications

- HDMI v1.2, HDCP 1.1 and DVI 1.0 compliant
- HDMI Frequency bandwidth: 1.65Gbps (single link)
- Input: Audio L/R $\times 1$ and Toslink S/PDIF $\times 1$
- Output: HDMI female port (type A connector) $\times 1$
- Power Supply: 5VDC 2.6A power supply (AC 90-240V)
- Weight: 1.5 Kgs
- Dimensions: $280(\mathrm{~W}) \times 130$ (D) $\times 44$ (H) mm

RS-232 Protocol

Pin	Definititon		Pin	Definition
1	NC		1	NC
2	TxD		2	RxD
3	RxD		3	TxD
4	NC	\rightarrow	4	NC
5	GND	4	5	GND
6	NC		6	NC
7	NC		7	NC
8	NC		8	NC
9	NC		9	NC

2. Front Panel Operation

1. Pattern Selection:

From P01 ~ P39
2. Resolution/Freq. Selection:

From T01~T39
3. Remote control sensor
4. HDCP LED Indicator:

The LED will illuminate when pattern "P39 HDCP-Produce" is selected and the output display (TV, monitor, etc.) supports HDCP. To unilluminate the HDCP indicator (Switch Off HDCP), frist step to change to other pattern and then changed either Timing, HDMI/DVI output selection or color space selection.
5. Display of PATTERN/TIMING:

Upper line: Number of TIMING, Resolution and Frequency (Example: T01 $640 \times 480-60$)
Lower line: Number of PATTERN and name of PATTERN (Example: P01 WHITE)
6. Audio Source Selection:

External L/R
External Optical
Internal Sinewave
7. HDMI/DVI Output Selection
8. Turn on/off AUTO pattern random-cycling
9. Color Space Selection:

RGB 4:4:4
YUV 4:4:4
YUV 4:2:2

3. Rear Panel Installation and Connection

1. RS232 Communication Port:

Connect to the COM1 or COM2 port of your PC, and control the unit remotely using the application provided.
2. Audio Optical Input
3. Audio L/R Input
4. Power Switch
5. Fill-Screen Button:

For some modals of TV/monitor, the video signal can not fill the screen of display completely, to correct this problem, press the button once when the power is on.
6. HDMI OUT:

The HDMI output can be connected to a HDMI display using HDMI cable, or to a DVI display using HDMI to DVI cable.

5. TIMING Table

No.	Resolution	Frequency (Hz)
101	640×480	60
T02	640×480	72
T03	640×480	75
T04	640×480	85
T05	800×600	56
T06	800×600	60
107	800×600	72
T08	800×600	75
T09	800×600	85
T10	1024×768	60
T11	1024×768	70
T12	1024×768	75
T13	1024×768	85
T14	1280×960	60
T15	1280×960	85
T16	1280×1024	60
T17	1280×1024	75
T18	1280×1024	85
T19	1600×1200	60
T20	1920×1200	60
T21	$720 \times 480 \mathrm{i}$	59
T22	$720 \times 480 i$	60
T23	$720 \times 480 \mathrm{p}$	59
T24	720x480p	60
T25	1280x720p	59
T26	1280×720p	60
T27	$1920 \times 1080 \mathrm{i}$	59
T28	$1920 \times 1080 \mathrm{i}$	60
T29	1920×1080p	59
T30	1920×1080p	60
T31	$720 \times 576 i$	50
T32	$720 \times 576 \mathrm{p}$	50
T33	1280×720p	50
T34	$1920 \times 1080 \mathrm{i}$	50
T35	1920×1080p	50
T36	$1920 \times 1080 \mathrm{p}$	23
T37	1920×1080p	24
T38	1366×768	60
T39	1366×768	50

No.	Signal Content	Description
P01	PURITY	Purity pattern Purity offers eight different full field patterns: Black, White (100% Y) Primary colors: Red, Green, Blue Complementary colors: Magenta, Yellow, Cyan P01: White P02: Blue P03: Red P04: Magenta P05: Green P06: Cyan P07: Yellow P08: Black
P02	PURITY	
P03	PURITY	
P04	PURITY	
P05	PURITY	
P06	PURITY	
P07	PURITY	
P08	PURITY	

Application

1. The red and green patterns are most frequently used for checking color purity. The red pattern is selected only this color should be visible; the presence of any other color is an indication that color purity needs adjustment.
2. The green pattern provides a purity check for three in-line tubes. In the in-line tubes, the guns are in a horizontal position and the green gun is located in the center.
3. The blue is the complementary colors are often used to check the color performance.
4. The red are used to ensure that there is no interference between the sound and chroma carrier. Furthermore the red pattern is used to adjust the longplay delay level to minimum flicker.
5. In addition to the primary and complementary colors 100% white can be selected as well as black pattern with color burst to check.

P18	WWTITI	Black-White Vertical Full screen linear vertical bar signal with black/white intervals of $1 / 6 / 12$ pixels.	
P19	Wer\|iv]		
P20		P19: 6 pixels P20: 12 pixels	
Application			
This pattern serves for a quick check of color monitor's horizontal bandwidth and phase behavior of a video transmission. Also, verify video amplifier and color temperature.			
P21		Black-White Horizontal Full screen linear Horizontal bar signal with black/ white intervals of $1 / 3 / 6$ pixels.	
P22		P21: 1 pix	
P23		P22: 3 pixels P23: 6 pixels	
Application			
This pattern serves for a quick check of color monitor's vertical bandwidth and phase behavior of a video transmission. Also, verify video amplifier and color temperature.			
P24	Ww]	Multi-burst Full screen definition pattern of frequencies 0.5, 1.0, 2.0, 4.0, 4.8 , and 5.8 MHz for 625 line systems. P24: Multi-burst 1 P25: Multi-burst 2	-Video bandwidth -Check luminance amplifier in B/W
P25			-Amplitude response/ resolution -Check resolution of monitors and video recorders -Measure the frequency amplitude response
Application			
The pattern checks the bandwidth of the video or luminance amplifier in B / W or CTVs as well as the resolution of monitors and video recorders. It can also be used to check or measure the frequency amplitude response.			

P26	Grid Full screen grid with black/white intervals of $1 / 3 / 6 / 12$ pixels.	
P27	P26: 1 pixel P27: 3 pixels P28: 6 pixels P29: 12 pixels	
P28		P29
Application	Running H Full screen filled with lines of H characters, a new line of H will run from upper left corner and fill down when a line is completed.	
This pattern is mainly used for checking and aligning dynamic and corner		
convergence of TVs or monitors.		

$\begin{array}{|l|c|l|l|}\hline \text { P33 } & \text { CYP } & \begin{array}{l}\text { Cypress Patterns } \\ \text { Cypress specifically designed patterns. }\end{array} \\$\cline { 1 - 2 } P34 \& CYP \& $\left.\begin{array}{l}\text { P33: Greyscale } \\ \text { P34: 3 step Horizontal color bar } \\ \text { P35: SAMPTEbar }\end{array} \\ \hline \text { P35 } & \text { CYP: CYP-4 } \\ \text { P37: Britebox-1 } \\ \text { P38: EDID }\end{array}\right]$

6. Remote Control

1. Switch to P39 HDCP
2. Turn on/off AUTO pattern random-cycling
3. Color Space Selection:

RGB 4:4:4
YUV 4:4:4
YUV 4:2:2
4. Audio Output Selection:

External L/R
External Optical
Internal Shinewave
5. HDMI/DVI Output Selection
6. Quick TIMING Selection:

VGA - T01 $640 \times 480-60$
SVGA - T06 800×600-60
XGA - T10 1024×768-60
SXGA - T16 1280×1024-60
UXGA - T19 1600×1200-60
1080i-T27 1920×1080i-59
480p - T23 720x480p-59
720p - T25 1280×720p-59
1080p-T29 1920x1080p-59
7. Sampling Rate (-)

Sampling Rate (+)
192 KHz

96 KHz
48 KHz
44 K 1 Hz
32 KHz
8. [pqtu]

UP/DOWN: TIMING (+) (-)
RIGHT/LEFT: PATTERN (+) (-)
9. A/V Mute ON
10. A/V Mute OFF
11.Confirm OK

7. RS-232 Remote Control Protocol

* The connection between the system and remote controller with RS-232 modem cable.
Pins definition of modem cable

System			Remote Controller	
PIN	Definition		PIN	Definition
1	NC		1	NC
2	TxD		2	RxD
3	RxD	-	3	TxD
4	NC		4	NC
5	GND	-	5	GND
6	NC		6	NC
7	NC		7	NC
8	NC		8	NC
9	NC		9	NC

* RS-232 transmission format:

Baud Rate : 19200 bps
Data Bit : 8 bits
Parity: None
Stop Bit : 1 bit

* Command

Function	Command Code	CPHD-1 Reply	
Test connection			
	URTCNT+SPACE+0+SPACE+'A'+'D'		OK
Timing Selection			
	$1 . T M I X+$ SPACE+1+SPACE+'A'+'D'		OK
	2SPACE+timingindex+SPACE		OK
Pattern Selection			
	1.PTIX+SPACE+1+SPACE+'A'+'D'		OK
	2SPACE+patternindex+SPACE		OK

Timing index 1	640x480-60	Pattern Index 1	White
Timing index 2	640x480-72	Pattern Index 2	Blue
Timing index 3	640x480-75	Pattern Index 3	Red
Timing index 4	$640 \times 480-85$	Pattern Index 4	Magenta
Timing index 5	$800 \times 600-56$	Pattern Index 5	Green
Timing index 6	$800 \times 600-60$	Pattern Index 6	Cyan
Timing index 7	$800 \times 600-72$	Pattern Index 7	Yellow
Timing index 8	$800 \times 600-75$	Pattern Index 8	Black
Timing index 9	$800 \times 600-85$	Pattern Index 9	Gradually Red
Timing index 10	1024x768-60	Pattern Index 10	Gradually Green
Timing index 11	1024x768-70	Pattern Index 11	Gradually Blue
Timing index 12	1024×768-75	Pattern Index 12	Gradually Gray
Timing index 13	1024×768-85	Pattern Index 13	Color Bar
Timing index 14	1280×960-60	Pattern Index 14	Gray-8
Timing index 15	$1280 \times 960-85$	Pattern Index 15	Gray-16
Timing index 16	$1280 \times 1024-60$	Pattern Index 16	Gray-32
Timing index 17	$1280 \times 1024-75$	Pattern Index 17	Gray-64
Timing index 18	$1280 \times 1024-85$	Pattern Index 18	BW-1
Timing index 19	$1600 \times 1200-60$	Pattern Index 19	BW-6
Timing index 20	$1920 \times 1200-60$	Pattern Index 20	BW-12
Timing index 21	$720 \times 480 i-59$	Pattern Index 21	Hor-1
Timing index 22	$720 \times 480 \mathrm{i}-60$	Pattern Index 22	Hor-3
Timing index 23	720x480P-59	Pattern Index 23	Hor-6
Timing index 24	720x480P-60	Pattern Index 24	Multibust-1
Timing index 25	$1280 \times 720 \mathrm{P}-59$	Pattern Index 25	Multibust-2
Timing index 26	1280x720P-60	Pattern Index 26	Grid-1
Timing index 27	$1920 \times 1080 \mathrm{i}-59$	Pattern Index 27	Grid-3
Timing index 28	$1920 \times 1080 \mathrm{i}-60$	Pattern Index 28	Grid-6
Timing index 29	1920×1080P-59	Pattern Index 29	Grid-12
Timing index 30	$1920 \times 1080 \mathrm{P}-60$	Pattern Index 30	Running-H
Timing index 31	$720 \times 576 \mathrm{i}-50$	Pattern Index 31	Circles
Timing index 32	$720 \times 576 \mathrm{P}-50$	Pattern Index 32	BW_Upper_Down
Timing index 33	$1280 \times 720 \mathrm{P}-50$	Pattern Index 33	CYP_1
Timing index 34	$1920 \times 1080 \mathrm{i}-50$	Pattern Index 34	CYP_2
Timing index 35	$1920 \times 1080 \mathrm{P}-50$	Pattern Index 35	CYP_3
Timing index 36	1920×1080P-23	Pattern Index 36	CYP_4
Timing index 37	1920x1080P-24	Pattern Index 37	CYP_5
Timing index 38	1366x768-60	Pattern Index 38	EDID
Timing index 39	1366x768-50	Pattern Index 39	HDCP_Produce

SPACE = ASCII(32)
1 = ASCII(1)
PatternIndex $=$ ASCII(Patternindex)

8. RS232 Remote Control Application

8.1 Main Window

Double-click the executable exe file to launch the application, the main window will show up.

IMPORTANT: When the right hand bottom shows warning message 'CPHD-1 Status: Not Exit, clicking the Connect 倌 button to link to the unit.

8.2 Select COM port to control

Click and select the [COM port] from [Config] option of the tool bar to launch the Program window. There are 8 different COM ports can choose. After the port been selected click [OK] to confirm the control port.

8.3 Switch TIMING

Click and select the [Timing] from [Output] option of the tool bar to launch the Program window.
Click [Show List] to display each timing's Horizontal/Vertical/Pixel Clock. Click [Run Timing] button to start the output of selected timing.

List of Timings
Bryortimit

Timing Nane	Pixelfate	Horizortal	Yeticel
640,480.60	25.175 MHz	31.469 kHz	59.940 Hz
640x480-72	31.500 MHz	37.861 kHz	72.809 Hz
640×480.75	131.500 MHz	37.500 KHz	75.000 Hz
640x480-85	36000 MHz	43.269 KHz	85.008 Hz
800x600-56	36.000 MHz	35.156 KHz	56.250 Hz
7800x600-60	40.000 MHz	37.879 KHz	60.317 Hz
800×600.72	50.000 MHz	48.077 KHz	72.188 Hz
$800 \times 600-75$	49.500 MHz	46.875 KHz	75.000 Hz
800x600-85	66.250 MHz	53.674 KHz	85.061 Hz
1024×768-60	65.000 MHz	48.363 KHz	60.004 Hz
1024×768.70	75.000 MHz	56.476 KHz	70.069 Hz
-1024x,768-75	18.750 MHz	60.023 KHz	75.029 Hz
1024×768-85	94.500 MHz	68.677 KHz	84.997 Hz

8.4 Switch PATTERN

Click and select the [Pattern] from [Output] option of the tool bar to launch the Program window.
Click [Show List] to select output pattern and then click [Run Pattern] button to start the output of selected pattern.

List of Patterns

8.5 Programming TIMING/PATTERN

Click and select the [Program] from [Edit] option of the tool bar to launch the Program window.

EFMCMID	
Fle	ERt Config Duput
4	Timing
Pattem	
Frogran	
	Defoult Settine

Program the desired sequence of timing/pattern/unit/show time, then click [Upload] to send the program to the unit. IMPORTANT: For every timing pattern have to shown at least 3 seconds.

Click and select the [Save as] from [File] option of the tool bar to save your settings.
Click the [Open] from [File] option of the tool bar to load the saved data.

Click and select the [Timing] from [Edit] option of the tool bar to launch the Program window.

Seect	Trumg Name	Pxelfate	Horzortal	Vetical	\cdots
	640x480-60	25.175 MHz	31.469 kHz	59.940 Hz	
V	640x480-72	37.500 MHz	37.851 KHz	72.809 Hz	
	640x480-75	31.500 MHZ	37.500 kHz	75000 Hz	
	$640 \times 480-85$	36.000 MHz	43.269 KHz	85009 Hz	
- 8	800×600.56	36000 MHz	35. 156 KHz	58.250 Hz	
	800×600.60	40.000 MHz	37.879 KHz	60317 Hz	
	$800 \times 600-72$	50.000 MHz	48.077 KHz	72.188 Hz	
	800×60075	49.500 MHz	40.875 KHz	75000 Hz	
	800x600-85	56.250 MHz	53.674 KHz	8506.4 Hz	
	Select 4 ll			Uner	

Program the desired timings, and then click [Upload] to send the program to the unit.
Click and select the [Pattern] from [Edit] option of the tool bar to launch the Program window.
Program the desired patterns and then click [Upload] to send the program to the unit.

Select All
Upload

Click and select the [Default Setting] from [Edit] option of the tool bar to reset the unit to factory setting.

8.6 EDID

8.6.1 Read EDID

Click and select the [Read EDID] from [EDID] option of the tool bar to read out the EDID from the display source (e.g. LCD TV). Meanwhile, click and select the [Save as] from [File] option of the tool bar to save the EDID information to the computer in .bin format (e.g. to save as this file format "cypress.bin").

8.6.2 Memory of EDID

When click and select the [Memory] from [EDID] to read out the data, but the user may not know the data information that read out from the source. The user can use "Explore Semiconductor EDID Editor" to read out the EDID information.
From "Explore Semiconductor EDID Editor", click the [Open] from [File] option of the tool bar to read out the EDID data.

8.6.3 Upload EDID

Click the [Open] from [File] option of the tool bar to load the saved data (e.g. cypress.bin).
Click and select the [Upload EDID] from [EDID] option of the tool bar to write the EDID to the unit.
INPORTANT: After upload EDID to the unit, don't operation this unit before write EDID to the display unit. Otherwise, the EDID data will lose due to the memory size problem.

8.6.4 Write EDID

Click and select the [Write EDID] from [EDID] option of the tool bar to write the EDID to the display unit.

CYPRESS TECHNOLOGY CO., LTD.
Home page: http://www.cypress.com.tw

